Engineering Analysis of Fuel Cells and Hybrid Technologies for Support of the Net-Zero Energy Concept

Net-Zero Energy Conference – Colorado Springs

National Fuel Cell Research Center

UCIrvine | UNIVERSITY OF CALIFORNIA

Outline

- Near NZE Thoughts
- Importance of Integration
 - Load Profile Engineering UC Merced Example
 - Power Park Concept
 - Integration with Transport
- Importance of Dynamics and Control
 - Integrated Residential Fuel Cell Power System
 - Integrated Commercial Building Application

Near NZE Thoughts

• 1st: Do as much Energy Saving, Energy Efficiency as Possible

• 2nd: Use as much Renewable Power as Possible

CHALLENGES: Intermittency, Non-Coincidence, Remoteness, Cost,

Integration with Demands

• 3rd: "Complement" with Dispatchable Resources: DG, CHP, biomass, hydro

4th: Handle Instantaneous Power & PQ
 w/ Smart Communications and Control

Outline

- Near NZE Thoughts
- Importance of Integration
 - Load Profile Engineering UC Merced Example
 - Power Park Concept
 - Integration with Transport
- Importance of Dynamics and Control
 - Integrated Residential Fuel Cell Power System
 - Integrated Commercial Building Application

<u>Load Profile Engineering – Housing/Residential Building Example</u>

- Very little thermal and low electrical load
- Loads increase during the day to meet comfort requirements with increased activity
- Increased heat load for winter nights
- In summer, electric demand is much greater (cooling)

<u>Load Profile Engineering – Laboratory/Industrial Building Example</u>

- More energy-intensive requiring large amounts of both electrical and on-demand high temperature hot water
- Heating demands for winter and summer are nearly equivalent due to the 100% air circulation through the building

UC Merced Example

- Emissions and Efficiency estimates
- Phased Integration
- Various phases and technology component options
 - Boilers
 - Gas Turbines
 - Solid Oxide Fuel Cells
 - Hybrid SOFC-GT

Power Park Concept

Integration is key to energy /emissions savings

Integration with Transport

USE MORE ELECTRICITY

Mass Transit

Battery Electric Vehicles

Plug-in Hybrids

ZEV•NET

TOYOTA

Integration with Transport

Plug-In Hybrid **Fuel Cell Vehicle** (PHFCV)

- Meet long range driving demands
- •Fast refueling
- •Small, costeffective FC

HYDROGEN

Integration with Transport

Energy Station Concept – locally co-produce H₂

350 bar; 700 bar; liquid (future)

Outline

- Near NZE Thoughts
- Importance of Integration
 - Load Profile Engineering UC Merced Example
 - Power Park Concept
 - Integration with Transport
- Importance of Dynamics and Control
 - Integrated Residential Fuel Cell Power System
 - Integrated Commercial Building Application

Dynamic Modeling Tools

- MATLAB/Simulink® environment selected
 - User friendly, widely available/used, ideal for controls development
- Main assumptions:
 - quasi-steady state chemistry and electrochemistry (e.g., characterized by Nernst potential and losses)
 - Simplified geometry (but including some geometric resolution)
- Focus on dynamic solution of the essential FC and other component features such as:
 - Nernst potential
 - Electrochemical losses
 - Species concentrations and Mass conservation
 - Energy conservation
 - Momentum conservation
 - Heat Transfer
 - Chemical Reaction

- Planar SOFC with 10 Discrete Computational Nodes
 - Anode Gas, Cathode Gas, Cell EEA, Separator Plates

- Reformer Module with 5 Discrete Computational Nodes
 - Anode Off-Gas Recycle, Fuel Mix, Combustor HX, Catalyst Bed

NFCRC

Integrated Renewable Residential Fuel Cell System

 Energy storage is needed to supply the majority of power demand in residential stand-alone photovoltaic systems

Integrated Renewable Residential Fuel Cell System – 4.2 kW FC & 7.9 kW EZ Supply & Demand Power Flow

UC Irvine Load Profile Engineering Research:

 Continuously monitoring four commercial buildings in the University Research Park (URP) for more than 4 years

NFCRC

Basic Cost Equation (without heat recovery):

$$Cost = (P_{bldg} - P_{DG})C_e + (\frac{P_{DG}}{\eta_{DG}(P_{DG}, T_{amb})})C_{NG}$$

$$Cost of Electricity$$

$$from grid Cost of Natural Gas$$

Basic Cost Equation (with heat recovery and thermal storage):

$$Cost = (P_{bldg} - P_{DG})C_{e} + (\frac{P_{DG}}{\eta_{DG}(P_{DG}, T_{amb})})C_{NG} + (K_{ws}(Th_{bldg} - Th_{DG}(P_{DG}, T_{amb})COP_{AC})(\frac{C_{e}}{COP_{ec}})$$

Cost of Thermal Energy

Minimization of cost function for Quantum Office Bldg., Oct. 30th

1-250 kW FC, 1-60kW MTG, 1.3COP Abs. Chiller

National Fuel Cell Research Center

UCIrvine UNIVERSITY OF CALIFORNIA

Thank you for Your Attention!

